

AFFECTIVE MUSIC SYNTHESIS
Conveying Affectiveness in Leading-edge
Living Adaptive Systems

CALLAS

Project IST-34800

Deliverable D134 WP1.3

Deliverable
version 1.0 – 31 December 2008

Document. ref.: callas.D134.UOR.WP1.3.V1.0

CALLAS Affective Music Synthesis D134 Version 1.0

Programme Name: IST
Project Number: 34800
Project Title:.................................. CALLAS
Partners:.. Coordinator: ENG (IT)

Contractors:
VTT Electronics, BBC, Studio Azzurro, XIM,
Digital Video, Humanware, Nexture, University
of Augsburg, ICCS/NTUA, University of Mons,
University of Teesside, Helsinki University of
Technology, Université Paris 8, Scuola Normale
Superiore di Pisa, University of Reading,
Fondazione Teatro Massimo, HITLaboratory
New Zealand

Document Number: callas.D134.UOR.WP1.3.V1.0
Work-Package: WP1.3
Deliverable Type: Document
Contractual Date of Delivery: 31 December 2008
Actual Date of Delivery: 31 December 2008
Title of Document: Affective Music Synthesis
Author(s): Atta Badii, Ali Khan, David Fuschi

Approval of this report

Summary of this report: Description of CALLAS components of WP11

History: ..

Keyword List:

Availability This report is: public

CALLAS Affective Music Synthesis D134 Version 1.0

Table of Contents
EXECUTIVE SUMMARY 1

1. INTRODUCTION 2

2. OBJECTIVES 3

3. RELEVANT LITERATURE REVIEW 5
3.1 SAXEX AND JIG 5
3.2 SICOM 5
3.3 THE AFFECTIVE MUSIC REMIXER 5
3.4 PLEASURE-AROUSAL-DOMINANCE EMOTIONAL MODEL 5
3.5 RELEVANT DEVELOPMENT ENVIRONMENTS 6

4. ELEMENTS OF WORK 7

5. CASE BASED REASONING 8
5.1 INTRODUCTION TO CASE BASED REASONING (CBR) 8
5.2 CBR IN AMS CALLAS 9
5.3 IMPLEMENTATION DECISIONS 10

6. PLEASURE-AROUSAL-DOMINANCE MODEL 12
6.1 ABSTRACT 12
6.2 EMOTIONAL MODELS 12
6.3 IMPLEMENTATION 13

7. DESIGN AND IMPLEMENTATION OF AFFECTIVE MUSIC SYNTHESIS 14
7.1 INTRODUCTION 14
7.2 DESIGN OVERVIEW 14
7.3 THE CBR SYSTEM 15
7.4 THE AFFECTIVE MUSIC IMPROVISATION ENGINE (AMIE) 17
7.5 THE ANALYSIS ENGINE 17
7.6 INTEGRATION 18
7.7 CBR SYSTEM FLOW DIAGRAM 19

8. STANDALONE AMS DEMONSTRATOR 21
8.1 INTRODUCTION 21
8.2 INTERFACE OVERVIEW 21
8.3 XML SPECIFICATION 22

9. TCP INTEGRATION: AMS SERVER AND DEMO TCP CLIENT 23
9.1 INTRODUCTION 23
9.2 TCP CONNECTIONS 23

9.2.1 Using AMS Server’s Real-time Affectivisation Service 24
9.3 MANIPULATING REPOSITORIES 24
9.4 MANIPULATING CASES 25
9.5 GENERATING AND PLAYING CASES 25
9.6 GENERATING CASES FOR REAL-TIME AFFECTIVISATION 25
9.7 PROTOCOL FOR COMMUNICATION WITH THE AMS TCP SERVER 25
9.8 EXAMPLE XML 26
9.9 AMS TCP PROTOTYPES 27

9.9.1 Single Machine Client/Server Environment using loopback 27
9.9.2 Multiple Clients in a networked environment connecting to AMS TCP Server 28

CALLAS Affective Music Synthesis D134 Version 1.0

9.10 SCREENSHOTS OF AMS TCP SERVER 29
10. REAL-TIME MUSIC AFFECTIVISATION (RMA) 33

10.1 INTRODUCTION 33
10.2 RMA PROOF-OF-CONCEPT PROTOTYPE IN PURE DATA 34

10.2.1 Version history 34
10.2.2 Software and Hardware Requirements 35
10.2.3 Installation and Usage 35
10.2.4 Important known problems 40

10.3 INTEGRATION WITH AMS 40
11. CONCLUSION AND FUTURE DIRECTIONS 42

11.1 CURRENT STATUS OF AMS PROTOTYPES 42
11.2 MAPPING PAD EMOTIONAL MODEL TO AFFECTIVISATION PARAMETERS 44
11.3 AFFECTIVE MUSIC SYNTHESIS IMPROVISER 45
11.4 ROUTES 46

11.4.1 Route I 46
11.4.2 Route II 47

11.5 CONCLUSION 47
REFERENCES 48

CALLAS Affective Music Synthesis Page 1 D134 Version 1.0

Executive Summary

Computer music usually sounds mechanical; hence, if musicality and music expression of
virtual actors could be enhanced according to the user’s mood, the quality of experience
would be amplified. We present a solution that is based on improvisation using cognitive
models, Case-Based Reasoning (CBR) and Fuzzy values acting on close-to-affect-target
musical notes as retrieved from CBR per context. It modifies music pieces according to the
interpretation of the user’s emotive state as computed by the emotive input acquisition
componential of the CALLAS framework [24]. The CALLAS framework incorporates the
Pleasure-Arousal-Dominance (PAD) Emotional Model which reflects the emotive state of the
user and represents the criteria for the music affectivisation process. Using previous
instances of affective adaptations from a case repository, a selection of music samples are
adapted according to a user’s mood. The PAD values are used by the CBR subsystem for
selection and retrieval of a suitable previously stored case in the CBR repository. The user’s
mood is represented along three affective axes: "pleasure", "arousal", and "dominance".
Using combinations of positive and negative states for these affective dynamics, the following
octants are used as reference emotive states of the user, “Exuberant”, “Bored”, “Dependent”,
“Disdainful”, “Relaxed”, “Anxious”, “Docile” and “Hostile”. This allows for a level of interactivity
that makes way for an interesting environment to experiment and learn about expression in
music.

CALLAS Affective Music Synthesis Page 2 D134 Version 1.0

1. Introduction
Computer music usually sounds mechanical and it would increase the Quality of Experience
if musicality and music expression of virtual actors could be enhanced for user mood
resonance for enjoyment. Research work carried out notably by Arcos and Mantras [7]
whose SaxEx system uses Case Based Reasoning and fuzzy rules to model human
musician’s affective performance expertise on a saxophone and to re-use it in delivering a
targeted affective quality in the thus improvised music. The interactive possibilities of SaxEx
developed in NOOS language allow the user to choose among a variety of alternative
choices that can invoke a desired affect on the resulting musical expression. For example
the users can express their preference along three affective dimensions: "tender-aggressive",
"sad-joyful", and "calm-restless". This interactivity makes it a very interesting environment to
experiment and learn about expression in music. Callas researchers acknowledge that
following musical rules, no matter how sophisticated and complete they may be, is not
enough to give added expression to otherwise mechanical sounding computer music. The
challenges in deploying virtual affective musicians is to engineer an effective way of using
that tacit expressive knowledge that human musicians gain and use in improvising to
affectivise when playing a score; this is the sort of personal “touch” that gives the music a
particular targeted quality and is about knowing when and where not to play a note or add an
ornamental note.

CALLAS Affective Music Synthesis Page 3 D134 Version 1.0

2. Objectives
The aim is to produce an Affective Music Synthesis component for the CALLAS Shelf. This
system may then be integrated into a CALLAS Showcase to enhance a user’s experience
with the demonstrations interface. The system is to use Case Based Reasoning (CBR) to
adapt a limited selection of music sampled according to a user’s mood using previous
instances of affective adaptations from a case repository.

The aim of this module is to produce an Affective Music Synthesis (AMS) module for the
CALLAS Shelf which can synthesise music according to an emotional input. This module will
be based on improvisation using cognitive models, case based reasoning (CBR) and fuzzy
logic acting on close-to-affect target musical notes as retrieved from CBR per context.

The resulting module will be used in the CALLAS Showcase components, which can be
summarised as follows.

• Augmented Reality for Art, Entertainment and Digital Theatre - this component aims
to augment the expressive range of possibilities for performers by capturing their
movement and voices for analysis before digitally replicating the performers to show
the different affective performances.

• Interactive Installation for Public Places – This showcase aims to use the emotional
states of visitors to an interactive installation to create a richer type of interaction that
allow the installations to better engage the visitors, provide a novel platform for
sharing experiences and to better support visitor decision-making.

• Next Generation Interactive Television – This final showcase aims to adapt media
content according to affective input from the user, resulting in a more affective output
to the screen most probably through the use of an Embodied Conversational Agent
(ECA).

The Callas roadmap for this work is clearly based on improvisation using cognitive models,
Case-Based Reasoning and Fuzzy values acting on close-to-affect-target musical notes as
retrieved from CBR per context.

• Analyse the Callas ShowCase Requirements and decide on a repertoire of Affective
musical expressions to support it (in e.g. theatre, open air, immersive TV)

• Use example expressive music segments works to generate the Affective music
repository to deploy Case Based Reasoning

• Develop the CALLAS Affective Music Improvisation Engine using heuristics acting on
Fuzzy values of affect parameters of the similar-to-target-affect musical notes as
retrieved from the CBR. This CALLAS Affect Improvisation Engine will have access
to basic music knowledge rule sets and the basic score plus the retrieved similar
notes from the CBR and then apply the appropriate transforms to the notes to lend
expression using the CBR notes parameters and fuzzy values.

• Apply Saliency-triggered dynamic evaluation of resulting Musical Affect within a
controlled environment with a representative user group in order to assess the Affect
Improviser’s saliency-triggered Affect-Effectiveness Feature System per Evaluation.

CALLAS Affective Music Synthesis Page 4 D134 Version 1.0

• Run the Callas Incubator’s self-optimising GA Engine on the Affective Music
Improviser’s Emotional Speech synthesiser using the results of 4 above; to keep the
improviser components designs optimised and adapted to new musical genres,
cultures and affects - keep breeding better improvisers ready to Run

CALLAS Affective Music Synthesis Page 5 D134 Version 1.0

3. Relevant Literature Review
There has been significant interest in emotionally organised music collections in the past.

3.1 SaxEx and JIG

Previous work along these lines exists in the form of SaxEx [7] which uses CBR and fuzzy
logic to generate expressive performances of melodies based on examples of human
performances [7].

For musical improvisation, the Jazz Improvisation Generator (JIG) [16] and SICOM [17] have
both made attempts at getting a machine to solve this task. SICOM produces a MIDI file with
two tracks, a soprano and bass line, and produces results which its creators are pleased with.
As mentioned in their paper [17], the main issues seem to be their small case library (of 3
cases) and the efficiency of their retrieval mechanism.

The interactive possibilities of SaxEx [7] (a case based reasoning system for generating
expressive musical performances) were developed in NOOS language [8] which allow the
user to choose among a variety of alternative choices that can invoke a desired affect on the
resulting musical expression. Although, NOOS is a language which can be used in a CBR
system, it should be noted that it is not specifically built for CBR. Moreover, upon raising a
query with the NOOS team, it was discovered that an interpreter for NOOS is no longer
available.

3.2 SICOM

There exists a system known as SICOM [17] which creates music using CBR and stores it as
a MIDI track. The cases in the system represent notes in the track and the system uses CBR
to decide which notes would best fit with the previously played notes.

3.3 The Affective Music Remixer

The Affective Music Remixer [21] arranges musical collections through the use of short clips
(5 – 45 seconds) to gather emotional information. Emotional data is captured via the use of
GSR (Galvic Skin Response), foot tapping (to show how engaged a user is) and subjective
evaluation data (forms filled in by the user regarding their likes and/or dislikes).

3.4 Pleasure-Arousal-Dominance Emotional Model

The Pleasure-Arousal-Dominance (PAD) Emotional Model [22, 23] from the mid 1990s
(1995/1996) categorises emotions in eight forms:

• Exuberant

• Bored

• Dependant

• Disdainful

• Relaxed

• Anxious

• Docile

CALLAS Affective Music Synthesis Page 6 D134 Version 1.0

• Hostile.

The samples library can be eight pieces to match number of extremes in PAD emotional
model, plus an extra one for “neutral” emotion. Could also be multiples of this number so that
an equal number of samples per emotion is available. Picard et al. [20] back this idea from
PAD that there are eight emotional extremes and describe the difficulty behind machine
recognition of human emotion.

3.5 Relevant Development Environments

Max/MSP [19] is a visual programming language for developing multimedia applications. It
could be very beneficial for processing multimedia and affectivising music samples. However,
it also requires distribution licences and thus involves cost overheads.

Pure Data (Pd) [18] could be used as an alternative to Max/MSP. It is free and relatively easy
to use in comparison with Max. However, it should be noted that it lacks in areas where Max
excels e.g. freedom in terms of choice of languages for extern development, etc.

Caspian [2] is a free CBR system from University of Wales Aberystwyth, which uses CASL, a
cased based language, to represent items in its knowledge repository. It requires an index of
an enumerated type with a fixed definition, which does not allow for the complexities involved
in the Human emotional pattern (details in section 5).

CALLAS Affective Music Synthesis Page 7 D134 Version 1.0

4. Elements of Work
• Analyse the showcase requirements in order to select segments of music suitable to

support them in their environment. A suitable range of affective expressions should
also be chosen and, together with the musical segments, will be used to generate the
Affective Music Repository which will be deployed to the case based reasoning
module. The details of these musical segments will be stored as MPEG-SMR, a
symbolic music representation which can store every detail of an audio file in a way
as easily accessible as data in an XML file [ref].

• Develop the CALLAS Affective Music Improvisation Engine (AMIE) which will have
access to basic music knowledge rule sets, the basic score of music retrieved from
CBR and the similar notes retrieved from CBR. AMIE will apply appropriate
transforms to the notes to generate the affective music using the CBR notes
parameters and fuzzy values which are stored as part of an AMIE Improviser.

• AMIE should also provide a method of evaluating an Improviser’s results in order for
sensible information to be returned to the CBR repository. This system should be
tested against a user group in a controlled environment.

• Optimise AMIE’s Improvisers in terms of design and implementation in order to allow
it to better adapt to new music genres, cultures and affects.

CALLAS Affective Music Synthesis Page 8 D134 Version 1.0

5. Case Based Reasoning
This section aims to outline the principles behind Case Based Reasoning and its usage in the
context of the Affective Music Synthesis component of the CALLAS project.

5.1 Introduction to Case Based Reasoning (CBR)

Case Based Reasoning (CBR) is a method used in computing to allow software to solve
problems by recalling how similar problem were dealt with in the past. The software would be
given a set of basic cases and a set of rules by which it can alter these cases. When given a
problem, the software would find the most relevant case (or maybe multiple cases) and
modify it to better solve the problem. This process can be shown in the following diagram.

Figure 1: CBR Process

[1] The problem is entered into the system and analysed.

[2] The case which closest matches the details of the problem is selected.

[3] This case is modified to better fit the problem using predefined rules. This becomes
the solution which is presented to the user.

[4] The solution is analysed for its effect and is stored for future use along with an
indication of its successfulness. This allows the system to learn.

The system should be able to learn not only from its successful solutions, but also from its
failed solutions. This is known as success driven and failure driven learning [1]. Successful
solutions can be stored so that the solution can be reused without regenerating it. Solutions
which failed to solve the problem can be used to generate better solutions for use in the
future. The exact functionality of this concept depends on the implementation approach and
details.

Case Based
Repository

Application of
rules to modify
selected cases

Problem Solution

1

2

3

4

Retrieval

Selection

Presentation

Retention

CALLAS Affective Music Synthesis Page 9 D134 Version 1.0

5.2 CBR in AMS CALLAS

The aim of the Affective Music Improvisation Engine (AMIE) is to play affective music based
on a user’s current emotion, which in turn should enhance the user’s experience of CALLAS
as a whole. By employing a case based reasoning approach and providing AMIE with a few
basic cases and their solutions, the system should be able to adapt to a large part of the
affective input domain.

Figure 2: CBR Process in the Affective Music Synthesis CALLAS Component

[1] The input arrives from the multimodal CALLAS input module. As an example, this

might contain information that the user is 70% happy and 30% calm.

[2] The best of the previous cases is chosen and modified accordingly to become the
solution. The solution will contain information about which sample to select from the
music repository and which rules to follow about how to modify this music.

[3] Music is selected from the repository according the solution’s instructions.

[4] The selected music is modified using musical rules according to the solution’s
instructions. This forms the final affective musical output.

[5] The output is analysed for effectiveness and the solution is stored in the case
repository.

It should be noted that in this example we have chosen to store the parameters used to

Music repository

Case Repository

Musical and
emotional
rules

Affective User State
Information

Affective Music Output

1

2 3

4

5

CALLAS Affective Music Synthesis Page 10 D134 Version 1.0

create the affective output (the base music and the rules by which it is to be altered) rather
than storing the final musical solution (as an audio file). The parameters stored might be
related to the speed to which the tune should be altered, the increase or decrease in song
pitch, or other methods by which the song might be affectively altered. This method is
considered by the authors to be an effective method in the case of AMIE as there will be
many successful outputs possible for each case. By storing the method instead of the result,
it is possible that different outputs of equal strength may be achieved, varying the music that
a user might hear over time even if their mood remains constant. It may also be possible to
better analyse the solutions; where the same method produces varying degrees of success it
may be suggested that the method could be improved. Finally, where a particularly
successful output has been produced, it might be sensible to store the output as an audio file
which future cases will be able to modify directly. This would improve the output of the
system over time, although it may also have an undesired effect and cause the same output
to be repeated frequently.

5.3 Implementation decisions

Implementing a CBR system for CALLAS involves several tasks such as finding the closest
solution to a given problem, defining the original cases, defining the rules by which to alter
these cases, learning from successful cases, and more importantly, from unsuccessful cases
etc.

Research into previous work found a small number of projects which have used Case Based
Reasoning in a similar manner to the system planned here. The most relevant of these
projects is SaxEx [7], which uses CBR to generate emotional musical performances. This
also led to the discovery of NOOS [8], an object orientated language for writing Case Based
Reasoning systems. Upon its discovery, it was planned to use NOOS to implement the CBR
subsystem. However, the NOOS interpreter turned out to be unavailable and an alternative
system, Caspian [9], was investigated.

A framework for defining cases and local repair rules exists as part of Caspian [2], a case
based reasoning engine developed by the University of Wales Aberystwyth [2], which is
intended to be reused in a variety of applications. It uses a case based language (CASL) for
specifying cases, abstractions and repair rules. CASL is an extremely simple language for
creating a case based system. It allows quick and easy creation of initial cases and repair
rules for modifying those cases, as well as a method of abstracting case information for
easier selection. CASL forces a user to index cases using an enumerated type of a fixed
number of items. This indexing forces a user to choose a very specific value for a case
property, rather than allowing for a non-discrete set of values by which a user might wish to
index. This system also has the capability to rate each case for its relevance to a given
problem.

By implementing the case based reasoning of AMIE using Caspian, there would be a need to
create a case file in CASL (Caspian’s case based language) which would represent the
cases and rules required by AMIE. There would also be a need to turn the current Caspian
executable into a DLL for easier integration with other modules of AMIE and CALLAS. It
would be required to tie this together with the output system actually responsible for creating
and playing the effective musical output.

Finally, a method for analysing the effectiveness of these solutions would need to be
implemented. The system could be asked to store those solutions that are considered a
success, and alter those that are considered failures. Once altered, these could be stored for
use the next time a similar emotional context comes around. When any solution is reused, it
could be re-analysed for success and modified or stored as necessary. This would lead to the
solutions in the system gradually becoming more reliable until it becomes possible to choose
a successful solution for any given emotional context.

Input into the Caspian module will be in the form of several numeric values representing the

CALLAS Affective Music Synthesis Page 11 D134 Version 1.0

perceived emotional context of the user, where output will be in the form of the music sample
to play and the rules by which it is to be modified. Analysing the results may cause some
difficulty, but it is expected that CALLAS emotive input modules will provide the user’s new
emotions. If the new emotions fall into an expected range given the choices Caspian
previously made, then the solution might be considered a success. Otherwise, another music
sample and/or set of rules could be chosen and stored for future use.

Having discussed what is involved in implementing a case based reasoning system for the
AMIE system; Caspian initially looked to be an effective solution which would allow
implementation of a CBR system for AMS in a minimal amount of time. However, further
research showed that Caspian indexes its cases via a discrete set of pre-defined values
which would be unsuited to represent the continuous range of possible emotional models.
Further whilst the system might be alterable to index via the 8 octal ranges available in the
PAD emotional model, this would add to a number of already time consuming tasks needed
to alter Caspian for use with the Affective Music Improvisation Engine (AMIE). Therefore, it
was decided to implement a custom CBR engine which would allow better integration with
AMIE and would not pose any source and licensing issues,.

The CBR subsystem prototype has been written in C#. A flow diagram outlining the actions of
the CBR system as well as class diagrams have been included in this document under the
Implementation section.

The CBR subsystem is only one of three subsystems in AMS, with the Affective Music
Improvisation Engine (AMIE) and the Analysis Engine being the remainder. A diagram
explaining their roles within AMS can also be found later in this document, together with
discussion on their design and implementation.

All three systems have been integrated successfully to demonstrate the way in which varying
PAD model values i.e. the emotive input from the user affects the choice of cases and their
generated solutions.

CALLAS Affective Music Synthesis Page 12 D134 Version 1.0

6. Pleasure-Arousal-Dominance Model

6.1 Abstract

Before implementation, research took place to learn about the emotional model which is
expected to be used by the other CALLAS Shelf components. The chosen emotional model
is known as the PAD model (Pleasure, Arousal and Dominance) and has been briefly
documented in [11]. The implementation of this model was carried out in parallel with the
CBR Subsystem and as a result is included as part of the CBR subsystem class diagram
under the implementation section later in this document. This section aims to give an
overview of how the PAD Emotional Model can be used within CALLAS with respect to AMIE
(the Affective Music Improvisation Engine).

6.2 Emotional Models

An emotional model is used in order to effectively represent an emotional state. In the case
of the PAD emotional model, 3 values representing Pleasure, Arousal and Dominance (PAD)
are used. These three values allow for 8 extremes of state and many more intervening states
[Table 1]. Whilst other emotional models may also be suitable for use with CALLAS, other
CALLAS Shelf components have already selected this as their emotional model, making this
the easiest form in which these components can transfer their data to AMIE.

Table 1: Octants of temperament space [6]

Definitions of above mentioned octants from Merriam-Webster Dictionary:

• Exuberant joyously unrestrained and enthusiastic

• Bored being weary and restless through lack of interest

• Dependent determined or conditioned by another; relying on another for support

• Disdainful full or expressing disdain (a feeling of contempt for someone or something
regarded as unworthy or inferior)

• Relaxed freed from or lacking in precision or stringency; set or being at rest or at
ease

 P A D

Exuberant + + +

Bored - - -

Dependent + + -

Disdainful - - +

Relaxed + - +

Anxious - + -

Docile + - -

Hostile - + +

CALLAS Affective Music Synthesis Page 13 D134 Version 1.0

• Anxious characterised by extreme uneasiness of mind or brooding fear about some
contingency; ardently or earnestly wishing

• Docile easily taught; easily led or managed

• Hostile marked by malevolence; openly opposed or resisting; not hospitable; having
an intimidating, antagonistic or offensive nature

According to [26], experiments have shown P, A, and D axes to give a beneficial description
of temperament and personality. Eight basic octants (temperament types) are formed by
combinations of these three dimensions of temperament as mentioned before:

• Exuberant (extroverted, outgoing, happy, sociable)

• Bored (sad, lonely, socially withdrawn, physically inactive)

• Relaxed (comfortable, secure, confident, resilient to stress)

• Anxious (worried, nervous, insecure, tense, unhappy, illness prone)

• Dependent (attached to people, needy of others and their help, interpersonally
positive and sociable)

• Disdainful (contemptuous of others, loner, withdrawn and calculating, sometimes
anti-social)

• Docile (pleasant, unemotional, and submissive; likeable; conforming)

• Hostile (angry, emotional in negative ways, possibly violent) [26]

6.3 Implementation

This emotional model will be implemented in AMIE as a class of its own with three properties
representing P, A and D respectively. In order to allow the emotional models to be
compared, a method will be required that calculates the difference between the PAD values.
Pseudo-code for a simple implementation of this method can be seen in [Listing 1].

Since the PAD emotional model is in use by other CALLAS Shelf components, it is logical for
AMIE to make use of it as well. Implementation of the model should be simple, requiring
minimal effort in any object orientated language, whilst passing the model between
components should require only the knowledge of the 3 separate values P, A and D.

Listing 1: Pseudo-code for calculating differences between PAD models

Func diff (pad1, pad2){
 diffP = pad1.P – pad2.P;
 diffA = pad1.A – pad2.A;
 diffD = pad1.D – pad2.D;
 return abs(diffP) + abs(diffA) + abs(diffD);
}

CALLAS Affective Music Synthesis Page 14 D134 Version 1.0

7. Design and Implementation of Affective Music
Synthesis

7.1 Introduction

The task of the Affective Music Synthesis (AMS) system is to use Case Based Reasoning
(CBR) to adapt a limited selection of music sampled according to a user’s mood using
previous instances of affective adaptations from a case repository. This section aims to
outline the design and implementation of this system.

7.2 Design Overview

The AMS system contains 3 sub-systems; the Case Based Reasoning (CBR) system, the
Affective Music Improvisation Engine (AMIE) and the Analysis Engine. The diagram below
shows the input, output and interactions between the systems.

Figure 3: Input, Output and Interactions between the AMS sub-systems

As shown, the first point of entry for the PAD Values (acquired by the multimodal input
modules of CALLAS) into the Affective Music Synthesis module is the CBR subsystem.
These PAD values reflect the emotive state of the user and represent the criteria for the
music affectivisation process. The PAD values are used by the CBR subsystem for selection
and retrieval of a suitable previously stored case in the CBR repository (a music sample and
the parametric values of its associated solution which are to be used for modification of the
sample under consideration). The solution of the retrieved case is passed to the Affective
Music Improvisation Engine (or AMIE) which uses the values from the solution to affectivise
the given music sample. This generated music sample can be output either directly to the

CALLAS Affective Music Synthesis Page 15 D134 Version 1.0

speakers, or to a new file. To help improve the CBR system’s selection of cases, the
Analysis Engine uses further input PAD values to modify the selected case and store the
solution in the repository.

The system is implemented in C# and currently uses only a single external library known as
MIDI for .NET (Toub.Sound.Midi) [4]. As indicated, this shows that the system currently uses
MIDI files for its musical input and output.

7.3 The CBR System

The CBR system contains 4 classes, whose properties and methods are shown in the
diagram below.

Figure 4: CBR System Classes

AMSREPOSITORY This class stores a collection of AMSCASES and offers access to these
cases via a variety of methods. The public methods are described as
follows.

addToRepository(...) Adds an AMSCASE to the repository.

removeFromRepository(...) Removes the first matching AMSCASE
from the repository. Returns a value

CALLAS Affective Music Synthesis Page 16 D134 Version 1.0

indicating success.

selectClosestCase(...) Takes in a PADMODEL and returns the
closest matching solution in the repository.

generateCaseFromPAD(...) Takes in a PADMODEL and returns either
an existing case that matches this model,
or a newly generated case with suitable
parameters.

saveRepositorSITORy(...) Saves the repository to a file.

importRepository(...) A static method used to import a repository
from a file. Returns a new AMSREPOY.

AMSCASE This class represents a case with a problem definition (the
PADMODEL) and a solution (the MUSICSAMPLE). AMSCASES can also
be given a name and a success rate.

PADMODEL This class stores the three values of a PAD (Pleasure, Arousal,
Dominance) emotional model and provides methods for checking the
equality of instances.

MUSICSAMPLE This class stores the location of a music sample, and three values
(Tempo, Pitch and Volume) which can be used as information about
the music sample or the alterations to make.

Significant algorithms in this system include the PADMODEL comparison algorithm. This
algorithm maps each PADMODEL onto a three dimensional space and calculates the
“distance” between these points using standard geometrical equations. These equations
involve the use of the square root function, so a sign indicating whether one PADMODEL is
less than or greater than another must then be calculated. This is done by subtracting the
axis coordinate values from each other and determining the overall sign adding these
differences together and determining the sign of the result.

The second significant algorithm is the case generation algorithm found in the
AMSREPOSITORY class. This algorithm uses a quick sort algorithm to order the cases
according to their “closeness” to a given PADMODEL. The “closest” case to the problem can
then be selected and, should it match the problem precisely, be returned. Should this case
not precisely match, then the generation becomes more complex. In this circumstance, a
case on the “opposite side” of the problem model is selected. For example, if our closest
solution has a problem model that is considered “less than” the actual problem, then the
second selected case should be considered “greater than”. With two suitable cases selected,
the solutions in these cases can be integrated with respect to the proportion of their
respective distances from the problem case. For instance, when the closest case is 2 units
away from the problem and the second unit is minus 4 units from the problem, the entire first
case is added to one third (the distance of the closest case from the problem / the total
distance between the cases) of the second case. When a second case cannot be found for
integration the solution returned is the closest case.

Improvements to the AMSREPOSITORY class could be to improve the selection and
generation of cases from a PADMODEL. This could also require alterations to the
PADMODEL class to improve the comparison algorithm. The major improvement required for
case generation is an algorithm to generate a case when there are no cases on the “opposite
side” of the problem domain, but other performance enhancements could also be sought.

CALLAS Affective Music Synthesis Page 17 D134 Version 1.0

7.4 The Affective Music Improvisation Engine (AMIE)

AMIE is a simple system with only a single class which accesses the Toub.Sound.Midi
library. The methods contained within this class are discussed below. All methods in this
class are accessible without creating an instance.

Figure 5: AMIE Class

alterSequence(...) This requires a MUSICSAMPLE and three values to be passed in which
reflect how to alter the pitch, tempo and velocity (volume) of the music
sample. Once altered, the music sample is returned to the caller.

alterPitch(...) Alters only the pitch of a passed in MUSICSAMPLE.

alterTempo(...) Alters only the tempo of a passed in MUSICSAMPLE.

alterVelocity(...) Alters only the note velocity (volume) of a passed in MUSICSAMPLE.

As a result of its simplicity and the use of the Toub.Sound.Midi library, there are no
particularly complex algorithms in AMIE. The pitch alteration algorithm simply uses a method
from the external library to alter the pitch. The tempo alteration algorithm merely requires the
discovery and alteration of a single attribute of the given sample (although improvements to
this algorithm can be made by looking for other places this attribute occurs). Finally, the
velocity alteration algorithm simply loops through each note in the music sample setting a
new note velocity. An improvement to this final algorithm would be to recognise that each
note may be given a different volume and alter the velocities accordingly.

A major improvement to AMIE could involve the ability to affectivise musical pieces in an
improved manner by employing MPEG-SMR [20] for a comprehensive affectivisation
parameter set. Other improvements could involve addition of new effects such as using
different “backing tracks” or “flourishes” into the sample to alter the emotional context of the
music.

7.5 The Analysis Engine

The Analysis Engine consists of a single class with a single static method. This method
analyses the success of a solution by using the passed in PADMODEL to alter the solution
case. The altered case is then returned to the caller for inclusion into the CBR repository.

CALLAS Affective Music Synthesis Page 18 D134 Version 1.0

Figure 6: Analysis Engine Class

The analysing algorithm modifies the original case so that its PADMODEL is equal to the
feedback. Improvements to be made here will include accounting for other times this case
has been supplied, as well as possible modifications for the cases used to generate this
case.

7.6 Integration

To integrate the AMS modules with a new program, references must be added to four DLLs;
CALLAS_AMIE.dll, CALLAS_CBR.dll, AnalysisEngine.dll and Toub.Sound.Midi.dll. It is
intended as part of future refinements that the number of DLLs required will be fewer,
however as the source code is expected to undergo more changes, this separation is
required.

Once the DLLs have been referenced, classes can be instantiated and public methods and
properties listed above can be used. For instance, creating a new AMSREPOSITORY from a
file can be achieved in C# using the following code.

Listing 2: Pseudo-code for creating new AMSRepository from a file

Alternatively, a new AMSREPOSITORY could be created using the following code.

Listing 3: Pseudo-code for creating new AMSRepository

As one last example, the following code can be used to retrieve a new case from the
repository which represents a PADMODEL with 0.1, 0.5 and -0.2 as its values for Pleasure,
Arousal and Dominance respectively.

AMSRepository repository = AMSRepository.importRepository(filename);

AMSRepository repository = new AMSRepository();

AMSCase case1 = new AMSCase("Neutral");

case1.Problem = new PADModel(0, 0, 0);

case1.Solution = new MusicSample("saints.midi");

repository.addToRepository(case1);

CALLAS Affective Music Synthesis Page 19 D134 Version 1.0

Listing 4: Pseudo-code for retrieving a new case from AMSRepository

Further code examples can be found in the source code for the AMS Demonstration
Program.

7.7 CBR System Flow Diagram

PADModel padmodel = new PADModel();

padmodel.Pleasure = 0.1;

padmodel.Arousal = 0.5;

padmodel.Dominance = ‐0.2;

AMSCase generatedCase = repository.generateCaseFromPAD(padmodel);

CALLAS Affective Music Synthesis Page 20 D134 Version 1.0

Figure 7: CBR Flow Diagram

PAD values from input
module

Match values to previous
cases from CBR repository

Increase range of PAD
values and search again

Merge chosen cases to
form a better solution for
this instance.

If not found

Output solution case as a
music sample and values
to pass to modifying
methods.

Pass solution to Affective
Music Improvisation Engine

The CBR system is responsible for
initial selection of a solution.

Each case in the CBR Repository
has a set of PAD values
associated with it, a success rate
to show how it performed and the
data required to reproduce it as a
solution. The solutions consist of
music samples and a set of values
to pass to the methods responsible
for modifying the sample.

 To create the final solution,
multiple relevant cases are
selected and merged together
based on their proximity to the
problem values and their success
at solving previous problems.

CALLAS Affective Music Synthesis Page 21 D134 Version 1.0

8. Standalone AMS Demonstrator

8.1 Introduction

The purpose of this standalone program is to demonstrate the capabilities of the Affective
Music Synthesis module of CALLAS and its 2 sub-systems; Case Based Reasoning (CBR)
and the Affective Music Improvisation Engine (AMIE).

The current standalone program requires no installation as long as its files are kept together
in an uncompressed folder. Furthermore, this prototype working in a single machine
environment has no reported errors and bugs.

8.2 Interface overview

This section gives a brief overview of the main sections of the program interface.

The Pad Sliders indicate the levels of each value in the PAD (Pleasure, Arousal, Dominance)
emotional model. By enabling the “Link” checkbox, the user can modify the PAD values and
verify the behaviour of the automatic case generation. However, in order to modify the PAD
values for a specific case, it is recommended that the “Link” checkbox is disabled. The PAD
value sliders and sample controls can then be modified separately, and clicking “Save Case”
will save the case to the repository. Cases can also be deleted from the repository by using
the “Delete Case” button with a selected case. When the “Case #” textbox is empty, the case
does not currently exist in the repository. The user has the option to give this new case a
name before clicking “Save Case” to enter the case into the repository. It is recommended
that all user generated cases should be given names and if a user attempts to enter a case
without a name into the repository, they will be asked to verify their action.

PAD Controls used to either
generate new cases when
clicked, or use “Link” to see

how modifying the PAD
sliders alter the case.

PAD Sliders modify the

emotional model.

The Music Sample details
are shown here. New files
can be loaded using the

“Browse” button.

Sample Controls are used
to control the pitch, tempo
and volume of the sample.

To play the sample with
these settings, click

“Play”. To reset these to
their defaults, click Reset”.

Case Details are shown
here. Use the “Previous”

and “Next” buttons to
browse through them.

repository.

Case Action Controls are
used to delete or modify
existing case or add new
cases to the repository.

CALLAS Affective Music Synthesis Page 22 D134 Version 1.0

Figure 8: Standalone AMS Demonstrator GUI

To save the repository or load a new repository from a file, the “File” menu is used. By
default, the program will open with a preset repository stored in the program folder. Unless
the user has opened a new repository or saves the repository using “Save Repository As...”,
this is where the repository will be saved. Repository files are XML files whose specification
will be discussed in the next section.

8.3 XML Specification

An example of a saved repository file can be seen below. The file contains a number of
AMSCASE elements within a single AMSREPOSITORY element. Each AMSCASE element
then has a PADMODEL element representing the problem and a MUSICSAMPLE element
representing the solution. These elements then have attributes which describe their state.
Friendly names for each AMSCASE can also be stored as an attribute of the AMSCASE.

PADMODEL elements have 3 attributes (PLEASURE, AROUSAL and DOMINANCE) all of which
must contain a numerical value between -1 and 1. These may if necessary be decimal
values. MUSICSAMPLE elements contain 4 attributes. The SAMPLEPATH attribute contains a
path to a music file to be played which can be either a relative path, or a full path. The PITCH,
TEMPO and VOLUME attributes contain the modifications which are to be made to the music
sample. These may be between any values, however for the purposes of the AMS
Demonstration program these values will need to be between the following values.

Pitch -15 to 15 (where 0 is no change to the Pitch)

Tempo 0 to 4 (where 1 is no change to the tempo)

Volume 0 to 100 (where 50 is no change to the volume)

<?xml version="1.0"?>

<AMSRepository>

 <AMSCase Name="Exuberant">

 <PADModel Pleasure="1" Arousal="1" Dominance="1" />

 <MusicSample SamplePath="saints.mid" Pitch="7" Tempo="0.5" Volume="100" />

 </AMSCase>

 <AMSCase Name="Bored">

 <PADModel Pleasure="-1" Arousal="-1" Dominance="-1" />

 <MusicSample SamplePath="saints.mid" Pitch="-3" Tempo="2" Volume="50" />

 </AMSCase>

Opens a repository from a file.

Saves the repository to its file.

Saves the repository to a new file.

 Exits the program.

CALLAS Affective Music Synthesis Page 23 D134 Version 1.0

9. TCP Integration: AMS Server and Demo TCP Client

9.1 Introduction

In order to facilitate integration with other CALLAS Shelf components, a TCP/IP based
interface has been developed by the Affective Music Synthesis component. Any
client/component may interact with the system through a set of simple commands issued via
a TCP connection. This section outlines the working of this method.

9.2 TCP Connections

To start the AMS TCP server, it is possible to either run the executable directly, or start the
application through the command line in order to specify a port for TCP communication. For
instance, to start the application using port 1616, use the command “ams_tcp 1616”. The
default port for the application, when none is specified, is port 3000.

To connect to the server, simply open a TCP socket to the selected port. For instance, if the
TCP server is running on the local host using port 3000, the C# code for connecting would
be as follows.

Listing 5: TCP Connections

CALLAS Affective Music Synthesis Page 24 D134 Version 1.0

There is no need to send a command to the server to connect. However, when the
application has finished using the client, the “exit” command should be sent. This will allow
the server to free up resources used by the connection and be better able to deal with new
incoming connections.

All commands sent to the server should be terminated with a new-line character. The use of
a new-line character within a command or its parameters will cause unexpected behaviour.

It should also be noted that the server assigns different case repositories to each connection;
changes made by one client will not affect any others. Loading and saving repositories will
be covered in the next section.

9.2.1 Using AMS Server’s Real-time Affectivisation Service

Once connection has been established, the AMS Server requests the user to specify whether
the service required is for real-time affectivisation or batch mode. By default, the server
extends real-time affectivisation services to its connected client. If real-time generation of
affectivisation parametric values is required by the client for music affectivisation in real-time,
the AMS Server opens a second port for outgoing messages. Hence, two half-duplex
communication ports are opened between the client and the server. More details about the
real-time AMS client (RMA patch developed in Pure data) can be found in section 10.

9.3 Manipulating Repositories

Once connected, the client has access to a copy of the server’s default repository, specified
by the file “repository.xml” in the server’s runtime directory. To load a new repository, simply
send the server the command “loadrepos” followed by an XML representation of the
repository which will be discussed below. To save the repository, send the command
“saverepos”. The server will then transmit the XML representation of the repository to the
client and the client can write this to the associated file.

using System.Net.Sockets;
using System.IO;

public class AMSClient
{
 public void connect()
 {
 TcpClient client = new TcpClient();
 client.Connect(“127.0.0.1”, 3000);

 //We can now use a StreamReader to read from the server
 StreamReader sr = new StreamReader(client.GetStream());
 String message = sr.ReadLine();

 //We can also use a StreamWriter to write to the server
 StreamWriter sw = new StreamWriter(client.GetStream());
 sw.AutoFlush = true;
 sw.WriteLine(“exit”);
 }
}

CALLAS Affective Music Synthesis Page 25 D134 Version 1.0

9.4 Manipulating Cases

With the correct repository loaded onto the server, individual cases can now be accessed
through the use of the “getcase”, “savecase” and “delcase” commands. The “getcase”
command needs only a number representing the index of the case to be retrieved from the
repository. If this number is not valid, then the message “Invalid Index” will be returned. If
the index is valid then an XML representation of the case will be returned in the form given in
the XML example later in this document.

To save a case, the “savecase” command requires that an XML representation of the case be
passed to the server as a parameter. If the XML includes an “Index” attribute then the case
will overwrite the case found at that index. If there is no “Index” attribute or this attribute is
less than zero, then the case will be stored as a new case in the repository and assigned an
index number. When the case has been stored, the XML representation of the case will be
returned, complete with an “Index” attribute to show its place in the repository.

Finally, the “delcase” command requires an index of the case to delete. For example,
“delcase 5” would delete the 5th case in the repository.

9.5 Generating and Playing Cases

The main functionality of the Affective Music Synthesis system is to provide a method by
which music can be generated based on an emotional model. To do this via the TCP server,
the “generate” command should be used to create a new case and the “play” command used
to play a case. “Generate” requires an XML representation of a new case with appropriate
PAD values. These PAD values will be used to populate the other fields of the case and the
resulting XML representation is returned to the client. “play” can then be passed this XML in
order to play the resulting sound file.

9.6 Generating Cases for Real-time Affectivisation

To request the AMS Server to generate corresponding affectivisation parametric values from
PAD model cases, the “realtime p.p a.a d.d” command should be sent; p.p, a.a. and d.d
represent pleasure, arousal and dominance values respectively. When received by the
server, XML representation of a sample case is created and processed by the server in
conjunction with the CBR for matching retrievals and/or computation of parametric values.
These values are then sent back to the real-time client in the form of “ptv p.p t.t v.v”; where
p.p, t.t and v.v represent pitch, tempo and velocity i.e. affectivisation parametric values.

9.7 Protocol for communication with the AMS TCP Server

Table 2: Protocol for communication with the AMS TCP Server

Command Description Returns

getcase <int> Returns the case at the specified
index in the repository.

Returns the <xml> representing the
case found at that position.

Savecase <xml> Saves the case to the repository. If
the <xml> contains a valid index,
then the case will replace any found
at that index in the repository.

Returns the <xml> including the
index of the case in the repository.

delcase <int> Deletes the case found at the

CALLAS Affective Music Synthesis Page 26 D134 Version 1.0

specified index in the repository.

Generate <xml> Generates a case based on the
<xml> of an empty case with
relevant PAD values.

Returns <xml> representing a case
for these PAD values.

realtime <float>
<float> <float>

Generates a case based on the
PAD model received in the order,
pleasure, arousal and dominance

Returns “ptv p.p t.t v.v” where p.p,
t.t. and v.v represent floating point
affectivisation parametric values
representing a case for the input
PAD values.

play <xml> Plays the music associated with the
<xml> case using the specified
parameters in the <xml>

loadrepos <xml> Loads the <xml> representation of
the repository into the server.

Saverepos Retrieve the <xml> representation
of the repository.

Returns the <xml> of the server
repository for use by the client, i.e.
storage in a file.

Exit Closes the connection with the
server.

9.8 Example XML

For the purposes of this TCP server, certain parts of the example XML are used for
communication. For instance, the “loadrepos” and “saverepos” commands both use the full
AMS XML specification; however the Index attribute of an AMSCase is optional in these
circumstances.

The “play”, “generate” and “savecase” commands all require only a single AMSCase element
to be sent. The Index attribute is again optional, unless the intention is to save a modified
case in its original position in the repository.

<?xml version="1.0"?>

<AMSRepository>

 <AMSCase Name="Exuberant" Index="0">

 <PADModel Pleasure="1" Arousal="1" Dominance="1" />

 <MusicSample SamplePath="saints.mid" Pitch="7" Tempo="0.5" Volume="100" />

 </AMSCase>

 <AMSCase Name="Bored" Index="1">

 <PADModel Pleasure="-1" Arousal="-1" Dominance="-1" />

 <MusicSample SamplePath="saints.mid" Pitch="-3" Tempo="2" Volume="50" />

 </AMSCase>

CALLAS Affective Music Synthesis Page 27 D134 Version 1.0

All XML sent to the server should be done so without line breaks. Equally, all XML received
from the server will be done without line breaks. It is considered that a line break is the signal
for the end of a command.

9.9 AMS TCP prototypes

The current networked prototypes working in

i) A single machine environment (loopback) as well as

ii) Client/Server residing on separate machines

have no reported errors and bugs.

9.9.1 Single Machine Client/Server Environment using loopback

Figure 9: Single Machine Client/Server Environment using loopback

As seen in figure above, the TCP single machine version of AMS uses loopback to send PAD
values from the client to the server. The server engine then either retrieves a matching case
from the CBR or in case there is absence of a matching case, computes the necessary
parametrics of affectivisation and sends them back to the client on the same machine via
TCP loopback.

TCP

Server

Loopback

TCP

Client

 <AMSCase Name="Bored" Index="1">

 <PADModel Pleasure="-1" Arousal="-1" Dominance="-1" />

 <MusicSample SamplePath="saints.mid" Pitch="-3" Tempo="2" Volume="50" />

CALLAS Affective Music Synthesis Page 28 D134 Version 1.0

9.9.2 Multiple Clients in a networked environment connecting to AMS TCP
Server

Figure 10: Multiple Clients in a network environment connecting to AMS TCP Server

The figure above demonstrates the working of TCP version of AMS when one or more clients
connect to the server remotely for affectivisation of music pieces. As shown, a client may
initiate connection to the listening server via TCP and send PAD values along with the media
(sound file) to the server over a network, in order to use the Affective Music Synthesis Engine
capabilities on the server side. The server retrieves a matching case (if one exists) from the
CBR and provides the modified parameters of affectivisation to the client along with the
affectivised media. After the job is complete, client initiates a request for the connection to be
terminated via the exit command.

The temporal diagram below shows that in case of long-lasting interactions it could happen
that at time of reply the communication may have been lost or other problem may have
occurred, thus it would be better to pass from a synchronous approach to an asynchronous
one (see red acks).

In the fully networked and distributed scenario it may be better to have I/O queues (in green)
to handle the process especially in case of concurrent events and also to grant scalability.

It may be profitable to pass from a situation in which the command line transferred includes
parameter to a situation in which files are transferred (as jobs) holding the parameter and, if
needed, also the actual file via FTP; in this manner it would also be possible to further exploit
the flexibility introduced by the queues as we could adopt a job oriented approach that could
be easily parallelized.

PAD

Client

Server

Media

FIFO

Network CBR FIFO

Par

Server – Affective Music Synthesis TCP Server Engine
Client – Affective Music Synthesis TCP Client
CBR – Case Based Repository
PAD – Values for Pleasure-Arousal-Dominance Emotion Model
Media – Sound file to be affectivised
Par – Parameters of affectivisation i.e. tempo, pitch, velocity …
FIFO – Fist-In-First-Out list for job prioritisation

CALLAS Affective Music Synthesis Page 29 D134 Version 1.0

Figure 11: Client-Server-CBR Interaction Diagram

9.10 Screenshots of AMS TCP Server

Screenshots of above mentioned commands sent to the AMS server by a demo TCP client
and their respective responses.

GENERATE <xml>

Figure 12: Generate <xml>

GETCASE <int>

Figure 13: GETCASE <xml>

SAVECASE <xml>

CBR Client Server

Ack

Ack

Req

CALLAS Affective Music Synthesis Page 30 D134 Version 1.0

Figure 14: SAVECASE <xml>

PLAY

Figure 15: PLAY

SAVEREPOS

Figure 16: SAVEREPOS

CALLAS Affective Music Synthesis Page 31 D134 Version 1.0

LOADREPOS <xml>

Figure 17: LOADREPOS <xml>

EXIT

Figure 18: EXIT

CALLAS Affective Music Synthesis Page 32 D134 Version 1.0

Screenshots of AMS TCP Server version 2 and a demo TCP Client (also part of AMS TCP
prototype version 2) connecting to the server for affectivisation services:

Figure 19: CALLAS Affective Music Synthesis TCP Server

Figure 20: CALLAS AMS TCP Server – Demo Client GUI

PAD Controls used to either
generate new cases when
clicked, or use “Link” to see

how modifying the PAD
sliders alter the case.

PAD Sliders modify the
emotional model.

The Music Sample details
are shown here. New files
can be loaded using the

“Browse” button.

Sample Controls are used
to control the pitch, tempo
and volume of the sample.

To play the sample with
these settings, click

“Play”. To reset these to
their defaults, click

“Reset”.

Case Action Controls are
used to delete or modify
existing case or add new
cases to the repository.

Case Details are shown
here. Use the “Previous”

and “Next” buttons to
browse through them.

repository.

Connection details for
connecting to the server

are shown here.

Opens a repository from a file.

Saves the repository to its file.

Saves the repository to a new file.

 Exits the program.

CALLAS Affective Music Synthesis Page 33 D134 Version 1.0

10. Real-time Music Affectivisation (RMA)

10.1 Introduction

To carry out affectivisation of music on-the-fly, a number of audio programming languages /
environments have been considered including Pure data <http://www.puredata.org> and
Max/MSP <http://www.cycling74.com>, for developing a proof-of-concept RMA prototype.
Due to licence cost overheads, Pd was preferred over Max/MSP and a first proof-of-concept
patch for RMA has been developed using Pd. It is planned to consider another audio
programming language “ChucK” <http://chuck.cs.princeton.edu/> for the first RMA release
version. Investigations will focus on ChucK’s support for integration with other languages and
environments as well as performance evaluation and comparisons.

CALLAS Affective Music Synthesis Page 34 D134 Version 1.0

Figure 21 i) Real-time Music Affectivisation ii) Evolution (v1.2 to v1.5)

10.2 RMA proof-of-concept prototype in Pure data

The input for this proof-of-concept Pd patch is a MIDI sequence and a stream of Pleasure-
Arousal-Dominance (PAD) values. Currently, these values are set manually using sliders
however the sliders are able to receive data over TCP which may prove useful for integration
with emotive input modules and components of the CALLAS project. In order to effectively
use these PAD values for affectivisation purpose, the RMA Pd Patch connects to the AMS
server over TCP and uses the real-time affectivisation service provided by the AMS Server.
As part of this service, corresponding affectivisation parameters (pitch, tempo and velocity)
are computed by the AMS Server from the client/user’s Pleasure-Arousal-Dominance (PAD)
model using the Case Based Repository (CBR) and these parametric values are then sent
back to the RMA Pd Patch over TCP. Two separate ports are used for incoming and outgoing
data. The patch gives as output affectivised MIDI sequence.

10.2.1 Version history
1. AMS-real-time-v1.pd:

a. First proof-of-concept RMA Pd patch
2. AMS-real-time-v1-2.pd (with rma.gpd):

a. First version of proof-of-concept RMA Pd patch with a GUI developed using
GrIPD: Graphical Interface for Pure Data (GNU General Public Licence)
<http://crca.ucsd.edu/~jsarlo/gripd/>

b. Input: MIDI sequence and affectivisation parameters
c. Output: Affectivised MIDI sequence

3. AMS-real-time-v1-3.pd (with rma-v1-3.gpd):
a. Input: MIDI sequence and PAD model

1. Patch connects to AMS TCP Server for using the real-time online
PAD-model-to-affectivisation-parameters service

2. Affectivisation parameters computed from PAD model by AMS
TCP server and sent back to the patch

b. Output: Affectivised MIDI sequence
4. AMS-real-time-v1-4.pd (with rma-v1-4.gpd):

a. Updates and Changes:

CALLAS Affective Music Synthesis Page 35 D134 Version 1.0

1. Resolved the following issues by using xeq object for MIDI stream
real-time manipulation

1. Undesirable slight MIDI note timing alteration
2. Browse, Convert and Load MIDI file before playing

5. AMS-real-time-v1-5.pd (with rma-v1-5.gpd):
a. Current version of proof-of-concept RMA Pd patch with a GrIPD GUI.
b. Updates and Changes:

1. Resolved the following issues
1. Specify Server IP address and port directly from GUI
2. Select and load MIDI file directly from GUI
3. MIDI output device selected at Pd start-up
4. GUI automatically loads at patch start-up

2. GUI updates
3. Insert PAD values stream from file

1. Load from GUI
2. Control PAD value stream feed speed

4. Display corresponding affectivisation parameter values processed
and sent back by AMS TCP Server

10.2.2 Software and Hardware Requirements
1. Pure data (Pd) <http://puredata.info/downloads>
2. Graphical Interface for Pure Data (GrIPD) <http://crca.ucsd.edu/~jsarlo/gripd/>
3. MIDI output device / support

10.2.3 Installation and Usage
1. Download and install Pd
2. Download GrIPD from URL <http://crca.ucsd.edu/~jsarlo/gripd/#downloads> and

follow installation instructions given below and/or at URL
<http://crca.ucsd.edu/~jsarlo/gripd/#installation>.

a. Unzip contents of gripd-*.zip to %Program Files%\pd\gripd\
b. Go to folder %Program Files%\pd\gripd and copy gripd.dll to a path which is

included in startup or path options of Pd e.g. %Program
Files%\pd\extra\cyclone

i. Alternatively, %Program Files%\pd\gripd (the path where gripd.dll is
originally located) can be specified under path or startup options of
Pd

c. If the DLL is visible to Pd, it will display GrIPD startup information in the main
window of Pd confirming that Pd has successfully found gripd.dll

i. If this is not the case, it means Pd has been unable to load gripd.dll
and hence the GrIPD-based GUI file for the Pd patch will not be
loaded either

3. Copy rma-v1-5.gpd to %ProgramFiles%\pd so that when the patch AMS-real-time-v1-
5.pd is run, the gripd object will be able to find the GrIPD GUI file (rma-v1-5.gpd) for
RMA. Default path for gripd is the folder %ProgramFiles%\pd

4. Run the patch AMS-real-time-v1-5.pd

CALLAS Affective Music Synthesis Page 36 D134 Version 1.0

Figure 22 Pure data - main window

Figure 23 AMS – Real-time Music Affectivisation patch in Pure data

CALLAS Affective Music Synthesis Page 37 D134 Version 1.0

5. Under Media menu, select the option MIDI settings… and select an appropriate MIDI
output device that is available on your machine as shown in figures below:

Figure 24 Pure data - MIDI settings

Figure 25 Pure data - set MIDI output device

CALLAS Affective Music Synthesis Page 38 D134 Version 1.0

6. If the GUI does not automatically launch, use the GUI controls in the patch to open

GUI window in locked or unlocked mode.

Figure 26 AMS - Real-time Music Affectivisation Pd patch GUI controls

7. Now use the GUI controls in the patch to open GUI window in locked or unlocked
mode.

Figure 27 RMA GUI in GrIPD

CALLAS Affective Music Synthesis Page 39 D134 Version 1.0

8. Specify the IP address and port to connect to the AMS Server and press Enter.

a. OUT and IN checkboxes will be checked automatically on successful
connection

9. Specify the MIDI file to be played by using filename (if it resides in the same folder as
the RMA Pd patch) or specify a path. Press Enter to load file.

10. Use play, pause and stop buttons to control playback of file. A vertical gauge displays
playback by responding to velocity of notes played.

11. Use Pleasure, Arousal and Dominance sliders to hear real-time affectivisation by
real-time and online computation of the affectivisation parameters (tempo, pitch and
velocity).

a. Slider values are displayed below each slider. These values are sent to the
server for processing.

12. PAD values can also be supplied to the Pd patch via a text file in the following format:
a. <time step> <P> <A> <D>; e.g. 100 0.83 -0.8 0.2;
b. The speed slider in the “input PAD values from file” panel allows the user to

control the rate at which PAD values are sent from the file to the server for
affectivisation processing.

c. Use play, pause and stop buttons to control playback of sample PAD values
file.

13. The Affectivisation Parameters panel displays the pitch, tempo and velocity values
corresponding to the PAD values processed by the AMS Server.

a. Three sliders display these values in the panel. These values are sent back
by the server post-processing.

14. Click Disconnect to disconnect from the AMS TCP Server.
a. OUT and IN checkboxes will be unchecked automatically on successful

disconnection

Figure 28 RMA Pd Patch GUI connected to AMS TCP Server

CALLAS Affective Music Synthesis Page 40 D134 Version 1.0

10.2.4 Important known problems
• None

10.3 Integration with AMS

The following two approaches were proposed for integration of the real-time music
affectivisation patch/module with the existing Affective Music Synthesis (AMS) component.
Currently, for RMA v1-3, Approach 2 has been used.

1. Client connects to AMS Engine, sends MIDI data and provides PAD values in real-

time; Engine retrieves CBR matching values or processes new values (if no match
exists) in real-time; Engine uses real-time patch for modification of MIDI sequence
and progressively streams data to client for playback.

a. Integrate the patch with existing AMS (To be done)

2. Client connects to AMS Engine and provides PAD values in real-time; Engine
retrieves CBR matching values of affectivisation parameters or process new values
(if no match exists) in real-time; Engine sends these values back in real-time to client;
Client includes real-time music affectivisation logic, which uses these values to
affectivise the MIDI sequence.

AMS Client

AMS Server

CBR

RMA

S

PADMedia

Server – Affective Music Synthesis TCP Server Engine
Client – Affective Music Synthesis TCP Client
CBR – Case Based Repository
PAD – Values for Pleasure-Arousal-Dominance Emotion Model
Media – MIDI to be affectivised
Par – Parameters of affectivisation i.e. tempo, pitch, velocity …
RMA – Real-time Music Affectivisation Patch

Par
C

Affectivised
Media

Figure 29: Approach 1 – Real-time Music Affectivisation patch at
Server side

CALLAS Affective Music Synthesis Page 41 D134 Version 1.0

AMS Client

AMS Server

CBR

RMA

S

PAD

Server – Affective Music Synthesis TCP Server Engine
Client – Affective Music Synthesis TCP Client
CBR – Case Based Repository
PAD – Values for Pleasure-Arousal-Dominance Emotion Model
Media – MIDI to be affectivised
Par – Parameters of affectivisation i.e. tempo, pitch, velocity …
RMA – Real-time Music Affectivisation Patch

Par

C

Affectivised
Media

Figure 30: Approach 2 – Real-time Music Affectivisation patch at
Client side

CALLAS Affective Music Synthesis Page 42 D134 Version 1.0

11. Conclusion and Future Directions

11.1 Current Status of AMS Prototypes

• Prototype of CALLAS Affective Music Synthesis (AMS) Module

o Standalone version (delivered August 2007)

o First TCP version using loopback (client and server on same machine, no
file/content transfer to server side) (delivered December 2007)

o Second TCP version (Client and Server on different machines), file/content
transferred to server along with PAD values for affectivisation service
(developed February 2008)

 An improved/polished version (delivered October 2008)

o Real-time Music Affectivisation (RMA) prototype patch developed in Pure
data (Pd) with a GrIPD GUI v1.2 (delivered October 2008)

 manipulates MIDI stream using affectivisation parametrics as direct
input via sliders

o Real-time Music Affectivisation (RMA) prototype patch developed in Pure
data (Pd) with a GrIPD GUI v1.3 (delivered October 2008)

 manipulates MIDI stream using PAD values as direct input via sliders

 Connects to AMS Server

 PAD model to affectivisation parameter values processed by AMS
server and sent back to patch in real-time

 MIDI manipulation performed by RMA Pd patch

o Real-time Music Affectivisation (RMA) prototype patch developed in Pure
data (Pd) with a GrIPD GUI v1.4 (delivered November 2008)

 UPDATE: Resolved the following issues by using xeq object for MIDI
stream real-time manipulation

1. Undesirable slight MIDI note timing alteration
2. Browse, Convert and Load MIDI file before playing

 manipulates MIDI stream using PAD values as direct input via sliders

 Connects to AMS Server

 PAD model to affectivisation parameter values processed by AMS
server and sent back to patch in real-time

 MIDI manipulation performed by RMA Pd patch

o Real-time Music Affectivisation (RMA) prototype patch developed in Pure
data (Pd) with a GrIPD GUI v1.5 (delivered November 2008)

 UPDATE: Resolved the following issues:
1. Specify Server IP address and port directly from GUI
2. Select and load MIDI file directly from GUI
3. MIDI output device selected at Pd start-up
4. GUI automatically loads at patch start-up

 UPDATE: GUI updates
 UPDATE: Insert PAD values stream from file:

1. Load from GUI

CALLAS Affective Music Synthesis Page 43 D134 Version 1.0

2. Control PAD value stream feed speed
 UPDATE: Display corresponding affectivisation parameter values

processed and sent back by AMS TCP Server
• Agenda:

o Integrate the non-real-time (or batch) version and the real-time version to
develop a single next version configurable for online/offline, real-time/non-
realtime use.

o MPEG-SMR to enhance the parameters of affectivisation of music (currently
three parameters provided by MIDI are used: pitch, velocity and tempo)

SVN structure

11.1.1..1 AMS TCP prototype version 2
Current version (v2) of the AMS TCP prototype can be located at CALLAS SVN
(http://www.callas-lab.eu/svn) under the folder /ams

• Note: /ams/bin includes the standalone AMS version with necessary DLLs (Early
prototype, non TCP)

Use CALLAS Affective Music Synthesis solution file to run solution with all necessary projects
including demos for standalone AMS and TCP version with AMS server and AMS client.

• /ams/src/CALLAS_AMS_Demo includes src and bin for standalone AMS version

• /ams/src/CALLAS_AMS_TCP

o includes src and bin for AMS TCP server
o console based
o listens for incoming connections
o performs affectivisation of music piece sent by client

• /ams/src/CALLAS_AMS_Demo_TCP

o includes src and bin for a demo TCP client
o connects to AMS TCP Server
o GUI
o Sliders for setting PAD values manually (demo; replaced by PAD streams

from CALLAS emotive input components)
o Output sliders displaying corresponding affectivisation parametric values

(computed by AMS TCP Server)
o Two-way File transfer (music piece sent by client to server for affectivisation;

affectivised piece sent back to client)

11.1.1..2 AMS real-time prototype a.k.a Real-time Music Affectivisation RMA
version 1.5:
Download from Wiki:
http://wiki.callas-
newmedia.eu/twiki/bin/viewfile/Main/AffectiveMusicSyntesis?rev=1;filename=CALLAS-AMS-
RMA-v1-5.zip

Includes:
• RMA Pd Patch (proof-of-concept) .Pd file (v1.5)
• RMA Patch GUI (GrIPD) .gpd file (rma-v1-5.gpd)

CALLAS Affective Music Synthesis Page 44 D134 Version 1.0

• README
• RMA documentation .doc file (Affective Music Synthesis RMA v1-5)
• CALLAS AMS TCP Server binaries

Version 1.5 contains GUI updates and issue resolution reported in previous sections.

Version 1.4 updates included use of xeq object to manipulate MIDI streams and requesting
the AMS TCP server for PAD to affectivisation parametric processing on-the-fly. The GUI
(rma-v1-4.gpd and above) provides controls for connection/disconnection to/from the AMS
server and sliders to manually input PAD values in place of tempo, pitch and velocity sliders
(as in v1-2 and v1-3).

11.2 Mapping PAD Emotional Model to Affectivisation Parameters

An interesting feature for the Affective Music Synthesis module could be to use alternating
emotional models, one mapped directly proportional and the other inversely proportional to
the emotive input, such that the directly proportional mapping would drive the AMS module to
suit a user’s “Relaxed” mood, whereas an inversely proportional mapping would bring the
user’s mood from “Anxious” to “Relaxed”, for instance.

Figure 31: Hysteresis loop for the twp mappings of PAD Emotional Model with
Affectivisation Parameters

A threshold switch for alternating between the two mappings could either be statically
provided (worst case scenario) or be dynamically computed by maintaining a history of user
moods and affectivisation services rendered to use in a pre-specified time window.

This threshold switch could also be acquired as input to the Affective Music Synthesis module
from the user directly, e.g. in case of volume as an affectivisation parameter, the power of the
audio output at user side could be used to determine the volume level at which auditory
experience starts to overshoot a recommended safe decibel range. However, this additional
input parameter would a) require a profile management system be incorporated for
maintenance of up-to-date information on user and user’s device etc. and b) not completely
fall in line with the concept of CALLAS Shelf (i.e. all CALLAS modules take as input PAD
values only).

α PAD α 1/PAD

Threshold switch

Threshold switch

CALLAS Affective Music Synthesis Page 45 D134 Version 1.0

11.3 Affective Music Synthesis Improviser

Currently, the AMS module affectivises and modifies the music piece in context of the
emotive input representing the user’s mood. An Affective Music Synthesis Improviser Add-on
could be developed to synthesise music using a repository of short loop-able samples such
as beats, rhythms, melodies etc.

A look-up table could determine the time signature to suit a particular user mood. Such a
module would piece various loops together to form a short piece of music to be played back
in a loop.

If this piece is MIDI based, it could be streamed via real-time patch to affectivise it based on
incoming PAD values. Together with the AMS Improviser Add-on and the real-time music
affectivisation patch (RMA), AMS would be able to remove / add / update new patterns on to
the synthesised music as the mood changes from one state to another. For example, if a
mood change requires the tempo to be increased, at a computed threshold, the improviser
could decide to update the beat pattern being used. An illustration is given in figure above.

CALLAS Affective Music Synthesis Page 46 D134 Version 1.0

11.4 Routes

11.4.1 Route I

• Two types of mappings between the PAD model and the affectivisation parameters
set (directly proportional and inversely proportional)

Kind
Genre
Style
Pitch
Volume
Tempo
Keywords (≥ 3-5)

META

Ref DB

MOD
PAD

T0 T1

Match
Search

Figure 32: Affective Music Synthesis Improviser

1 … 3

∆T

e.g.

1-5 sec;

10-15 sec;

History (PAD)

+ Out

Case 1: SELECT * IN Ref DB WHERE
OUT_META LIKE META(*)

Case 2: SELECT * IN Ref DB WHERE
MOD LIKE META(*)

MATCH

Case 1: PAD In ∈ {PAD History}

Case 2: PAD In ∉ {PAD History}

Case (1) + Case (2)

LIST

Relevant
Components
from DB Component based on META

PAD ∈ MOD Keywords

Direct/Inverse MOD on History Base

CALLAS Affective Music Synthesis Page 47 D134 Version 1.0

• Step by Step offline affectivisation (non-real time), by switching between the two
mappings

• User would only perceive difference after each playback of affectivised music piece

• A playlist feature could be introduced to enhance user affectivisation perception

• Affective Music Synthesis Improviser

11.4.2 Route II

• Two types of mappings between the PAD model and the affectivisation parameters
set (directly proportional and inversely proportional)

• Immediate real-time affectivisation of MIDI stream switching between aforementioned
mappings

o Requires a real time affectivisation module (RMA Pd prototype patch already
developed)

• User would perceive difference/response immediately

• Affective Music Synthesis Improviser

11.5 Conclusion

Since:

• the core components of AMS (CBR etc.)

• a non-real-time affectivisation prototype a.k.a. batch or offline version of AMS using
toub.midi library; and

• a real-time music affectivisation prototype (AMS-RMA) using Pd and GrIPD

have already been developed. We intend to follow the aforementioned Route II (superior in
terms of quality of experience due to real-time affectivisation). Therefore, the following
specifies the future directions:

• Development of two types of PAD-model-to-affectivisation-parameters mappings
(directly proportional and inversely proportional) including a trigger switch

• Development of Affective Music Synthesis Improviser to create affective music from a
repository of pre-recorder short loopable samples

CALLAS Affective Music Synthesis Page 48 D134 Version 1.0

References

[1] CBR in Context: The Present and Future, David B. Leake, (accessed 23/04/2007),

Available in WWW: http://www.cs.indiana.edu/~leake/papers/p-96-
01_dir.html/paper.html

[2] Getting Caspian, University of Wales, Aberysywyth, (accessed 23/04/2007) Available
on WWW:
<http://www.aber.ac.uk/compsci/Research/mbsg/cbrprojects/getting_caspian.shtml>

[3] Inside Case Based Reasoning, Christopher K. Riesbeck, Lawrence Erlbaum
Associates Inc.

[4] Midi for .NET, GotDotNet, Available on WWW:
<http://www.gotdotnet.com/community/usersamples/details.aspx?sampleguid=89cde
290-5580-40bf-90d2-5754b2e8137c> (accessed 31/08/2007)

[5] The PAD Comprehensive Emotion (Affect, Feeling) Tests, Albert Mehrabian,
(accessed 24/06/2007) Available on WWW:
<http://www.kaaj.com/psych/scales/emotion.html>

[6] Personality Tests: A General Description of Temperament, Albert Mehrabian,
(accessed 24/06/2007), Available on WWW:
<http://www.kaaj.com/psych/scales/temp.html>

[7] SaxEx: a case based reasoning system for generating expressive musical
performances, Josep Lluís Arcos, Ramon López de Mántaras, Xavier Serra, 1998

[8] NOOS, IIIA Spain, (accessed 12/07/2007) http://www.iiia.csic.es/Projects/NOOS.html
[9] Getting Caspian, University of Wales, Aberysywyth, (accessed 23/04/2007) Available

on WWW:
<http://www.aber.ac.uk/compsci/Research/mbsg/cbrprojects/getting_caspian.shtml>

[10] Case Based Reasoning in CALLAS, IMSS University of Reading, CALLAS Project,
May 2007

[11] The PAD Emotional Model, IMSS University of Reading, CALLAS Project, July 2007
[12] CALLAS Progress Report – July 07, IMSS University of Reading, CALLAS Project,

July 2007
[13] Implementation Documentation, IMSS University of Reading, CALLAS Project,

August 2007
[14] Demonstration Program User Manual, IMSS University of Reading, CALLAS Project,

August 2007
[15] Using Background Music to Affect the Behavior of Supermarket Shoppers Ronald E.

Milliman Journal of Marketing, Vol. 46, No. 3 (Summer, 1982), pp. 86-91
doi:10.2307/1251706. Available on WWW: <http://links.jstor.org/sici?sici=0022-
2429(198222)46%3A3%3C86%3AUBMTAT%3E2.0.CO%3B2-7>

[16] Grachten, M. (2001) JIG: Jazz Improvisation Generator. In Proceedings of the
MOSART Workshop on Current Research Directions in Computer Music, 1-6.
Barcelona, Spain: Pompeu Fabra University Publishers

[17] Composing Music with Case Based Reasoning (SICOM) Pereira, F. C. , Grilo, C. ,
Macedo, L. , Cardoso, A. <http://www.cisuc.uc.pt/view_pub.php?id_p=67>

[18] Pd – Pure Data. Available on WWW: <http://puredata.info/>
[19] Max/MSP – Cycling 74. Available on WWW: http://www.cycling74.com/
[20] Rosalind W. Picard, Elias Vyzas, and Jennifer Healey (2001) Toward Machine

Emotional Intelligence: Analysis of Affective Physiological State Ieee Transactions
On Pattern Analysis And Machine Intelligence, Vol. 23, No. 10

[21] Jae-woo Chung, G. Scott Vercoe: The affective remixer: personalized music
arranging. CHI Extended Abstracts 2006: 393-398

CALLAS Affective Music Synthesis Page 49 D134 Version 1.0

[22] Mehrabian. Pleasure-arousal-dominance: A general framework for describing and
measuring individual differences in temperament. Current Psycho., 14(4):261--292,
Dec. 1996

[23] Personality tests: A general description of temperament. Available on WWW:
http://www.kaaj.com/psych/scales/temp.html

[24] CALLAS Framework. Available on WWW: <http://www.callas-newmedia.eu/the-
framework>

[25] MPEG Group on SMR Symbolic Music Representation. Available on WWW:
<http://www.interactivemusicnetwork.org/mpeg-ahg/>

[26] PAD Temperament. Available on WWW:
<http://www.kaaj.com/psych/scales/padsoft.html>

